Продольная остойчивость. Основы теории судна

  • В зависимости от плоскости наклонения различают поперечную остойчивость при крене и продольную остойчивость при дифференте . Применительно к надводным кораблям (судам), из-за удлинённости формы корпуса судна его продольная остойчивость значительно выше поперечной, поэтому для безопасности плавания наиболее важно обеспечить надлежащую поперечную остойчивость.
  • В зависимости от величины наклонения различают остойчивость на малых углах наклонения (начальную остойчивость ) и остойчивость на больших углах наклонения.
  • В зависимости от характера действующих сил различают статическую и динамическую остойчивость.
Статическая остойчивость - рассматривается при действии статических сил, то есть приложенная сила не изменяется по величине. Динамическая остойчивость - рассматривается при действии изменяющихся (то есть динамических) сил, например, ветра, волнения моря, подвижки груза и т.п.

Начальная поперечная остойчивость

При крене остойчивость рассматривается как начальная при углах до 10-15°. В этих пределах восстанавливающее усилие пропорционально углу крена и может быть определено при помощи простых линейных зависимостей.

При этом делается допущение, что отклонения от положения равновесия вызываются внешними силами, которые не изменяют ни вес судна, ни положение его центра тяжести (ЦТ). Тогда погруженный объем не изменяется по величине, но изменяется по форме. Равнообъемным наклонениям соответствуют равнообъемные ватерлинии , отсекающие равные по величине погруженные объемы корпуса. Линия пересечения плоскостей ватерлиний называется осью наклонения, которая при равнообъемных наклонениях проходит через центр тяжести площади ватерлинии. При поперечных наклонениях она лежит в диаметральной плоскости .

Свободные поверхности

Все рассмотренные выше случаи предполагают, что центр тяжести судна неподвижен, то есть нет грузов, которые перемещаются при наклонении. Но когда такие грузы есть, их влияние на остойчивость значительно больше остальных.

Типичным случаем являются жидкие грузы (топливо, масло, балластная и котельная вода) в цистернах, заполненных частично, то есть имеющих свободные поверхности . Такие грузы способны переливаться при наклонениях. Если жидкий груз заполняет цистерну полностью, он эквивалентен твердому закрепленному грузу.

Влияние свободной поверхности на остойчивость

Если жидкость заполняет цистерну не полностью, то есть имеет свободную поверхность, занимающую всегда горизонтальное положение, то при наклонении судна на угол θ жидкость переливается в сторону наклонения. Свободная поверхность примет такой же угол относительно КВЛ.

Уровни жидкого груза отсекают равные по величине объёмы цистерн, то есть они подобны равнообъёмным ватерлиниям. Поэтому момент, вызываемый переливанием жидкого груза при крене δm θ , можно представить аналогично моменту остойчивости формы m ф, только δm θ противоположно m ф по знаку:

δm θ = − γ ж i x θ,

где i x - момент инерции площади свободной поверхности жидкого груза относительно продольной оси, проходящей через центр тяжести этой площади, γ ж - удельный вес жидкого груза

Тогда восстанавливающий момент при наличии жидкого груза со свободной поверхностью:

m θ1 = m θ + δm θ = Phθ − γ ж i x θ = P(h − γ ж i x /γV)θ = Ph 1 θ,

где h - поперечная метацентрическая высота в отсутствие переливания, h 1 = h − γ ж i x /γV - фактическая поперечная метацентрическая высота.

Влияние переливающегося груза дает поправку к поперечной метацентрической высоте δ h = − γ ж i x /γV

Плотности воды и жидкого груза относительно стабильны, то есть основное влияние на поправку оказывает форма свободной поверхности, точнее ее момент инерции. А значит, на поперечную остойчивость в основном влияет ширина, а на продольную длина свободной поверхности.

Физический смысл отрицательного значения поправки в том, что наличие свободных поверхностей всегда уменьшает остойчивость. Поэтому принимаются организационные и конструктивные меры для их уменьшения:

Динамическая остойчивость судна

В отличие от статического, динамическое воздействие сил и моментов сообщает судну значительные угловые скорости и ускорения. Поэтому их влияние рассматривается в энергиях , точнее в виде работы сил и моментов, а не в самих усилиях. При этом используется теорема кинетической энергии , согласно которой приращение кинетической энергии наклонения судна равно работе действующих на него сил.

Когда к судну прикладывается кренящий момент m кр , постоянный по величине, оно получает положительное ускорение, с которым начинает крениться. По мере наклонения возрастает восстанавливающий момент, но вначале, до угла θ ст , при котором m кр = m θ , он будет меньше кренящего. По достижении угла статического равновесия θ ст , кинетическая энергия вращательного движения будет максимальной. Поэтому судно не останется в положении равновесия, а за счет кинетической энергии будет крениться дальше, но замедленно, поскольку восстанавливающий момент больше кренящего. Накопленная ранее кинетическая энергия погашается избыточной работой восстанавливающего момента. Как только величина этой работы будет достаточной для полного погашения кинетической энергии, угловая скорость станет равной нулю и судно перестанет крениться.

Наибольший угол наклонения, которое получает судно от динамического момента, называется динамическим углом крена θ дин . В отличие от него угол крена, с которым судно будет плавать под действием того же момента (по условию m кр = m θ ), называется статическим углом крена θ ст .

Если обратиться к диаграмме статической остойчивости, работа выражается площадью под кривой восстанавливающего момента m в . Соответственно, динамический угол крена θ дин можно определить из равенства площадей OAB и BCD , соответствующих избыточной работе восстанавливающего момента. Аналитически та же работа вычисляется как:

,

на интервале от 0 до θ дин .

Достигнув динамического угла крена θ дин , судно не приходит в равновесие, а под действием избыточного восстанавливающего момента начинает ускоренно спрямляться. При отсутствии сопротивления воды судно вошло бы в незатухающие колебания около положения равновесия при крене θ ст / под ред. Физическая энциклопедия

Судна, способность судна противостоять внешним силам, вызывающим его Крен или дифферент, и возвращаться в первоначальное положение равновесия после прекращения их действия; одно из важнейших мореходных качеств судна. О. при крене… … Большая советская энциклопедия

Качество корабля находиться в равновесии в прямом положении и, будучи из него выведенным действием какой либо силы, снова к нему возвращаться по прекращении ее действия. Это качество одно из важнейших для безопасности плавания; было много… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Ж. Способность судна плавать в прямом положении и выпрямляться после наклонения. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Остойчивость, остойчивости, остойчивости, остойчивостей, остойчивости, остойчивостям, остойчивость, остойчивости, остойчивостью, остойчивостями, остойчивости, остойчивостях (

Способность судна противостоять действию внешних сил, стремящихся наклонить его в поперечном и продольном направлениях, и возвращаться в прямое положение после прекращения их действия называется остойчивостью . Наиболее важной для любого судна является его поперечная остойчивость , поскольку точка приложения сил, противодействующих крену, располагается в пределах ширины корпуса, которая в 2,5-5 раз меньше его длины.

Начальная остойчивость (на малых углах крена). Когда судно плавает без крена, то силы тяжести D и плавучести γ·V , приложенные соответственно в ЦТ и ЦВ, действуют по одной вертикали. Если при крене на угол θ экипаж либо другие составляющие весовой нагрузки не перемещаются, то при любом наклоне ЦТ сохраняет свое первоначальное положение в ДП (точка G на рис. 7), вращаясь вместе с судном. В то же время вследствие изменившейся формы подводной части корпуса ЦВ перемещается из точки C 0 в сторону накрененного борта до положения C 1 . Благодаря этому возникает момент пары сил D и γ·V с плечом l , равным горизонтальному расстоянию между ЦТ и новым ЦВ судна. Этот момент стремится возвратить судно в прямое положение и потому называется восстанавливающим .

Рис. 7. Схема для определения плеч поперечной остойчивости при наклонении на угол θ.

При крене ЦВ перемещается по кривой траектории C 0 C 1 , радиус кривизны которой называется поперечным метацентрическим радиусом , а соответствующий ему центр кривизны M - поперечным метацентром .

Очевидно, что плечо восстанавливающего момента зависит от расстояния GM - возвышения метацентра над центром тяжести: чем оно меньше, тем меньше получается при крене и плечо l . На самой начальной стадии наклонения судна (в пределах до 10-15°) величина GM или h рассматривается судостроителями как мера остойчивости судна и называется поперечной метацентрической высотой . Чем больше h , тем большая необходима кренящая сила, чтобы накренить судно на какой-либо определенный угол крена, тем остойчивее судно.

Из треугольника GMN легко установить, что восстанавливающее плечо

l = GN = h · sin θ м.

Восстанавливающий момент, учитывая равенство γ·V и D , равен

M в = D · h · sin θ кгм.

Следовательно, остойчивость судна - величина его восстанавливающего момента - пропорциональна водоизмещению: более тяжелое судно в состоянии выдержать кренящий момент большей величины, чем легкое, даже при равных метацентрических высотах.

Восстанавливающее плечо можно представить как разность двух расстояний (см. рис. 7): l ф - плеча остойчивости формы и l в - плеча остойчивости веса. Нетрудно установить физический смысл этих величин, так как первая из них определяется смещением в сторону крена центра величины, а вторая - отклонением при крене линии действия силы веса D от первоначального положения точно над ЦВ. Рассматривая действие сил D и γ·V относительно C 0 , можно заметить, что сила D стремится накренить судно еще больше, а сила γ·V , наоборот, выпрямить его.

Из треугольника C 0 GK можно найти, что

l в = GK = C 0 G sin θ м,

где C 0 G = a - возвышение ЦТ над ЦВ в прямом положении судна.

Отсюда ясно, что для уменьшения отрицательного действия силы веса надо по возможности понизить ЦТ судна. В идеальном случае - иногда на гоночных яхтах с балластным фальшкилем, масса которого достигает 45-60 % водоизмещения судна, ЦТ располагается ниже ЦВ. У таких яхт остойчивость веса становится положительной и способствует спрямлению судна.

Эффект, аналогичный снижению ЦТ, дает откренивание - перемещение экипажа на борт, противоположный наклонению. Этот способ широко применяется на легких парусных швертботах, где экипажу, вывесившемуся за борт на специальном приспособлении - трапеции, удается настолько переместить общий ЦТ лодки, что линия действия силы D пересекается с ДП значительно ниже ЦВ и плечо остойчивости веса получается положительным (см. рис. 197).

Так как масса экипажа на малых судах составляет большую часть водоизмещения, перемещение людей в лодке существенно сказывается как на изменении положения центра тяжести, так и на величине кренящего момента. Достаточно, например, всем четырем пассажирам мотолодки встать, чтобы центр тяжести стал выше на 250-300 мм, а один человек, севший на борт, вызывает крен более 10°. Еще более существенную роль играет масса экипажа на легких гребных лодках и байдарках, где ширина корпуса невелика, а его масса оказывается значительно меньше массы человека. Поэтому конструкторы, да и лица, ответственные за эксплуатацию судна, стремятся как можно ниже расположить центр тяжести экипажа.

Прежде всего, следует избегать высоких сидений - вполне достаточна высота гребных банок от пайола 150 мм, а сидений на глиссирующих мотолодках - 250 мм. На одно-, двухместных гребных и разборных лодках, например, байдарках, гребцы могут располагаться на совсем невысоком сиденье (не более 70 мм) или непосредственно на днище лодки. На лодках облегченной конструкции пайолы часто заменяют деревянными планками, наклеенными изнутри на днище.

При модернизации серийных лодок или постройке самодельных большие запасы горючего (40-150 л) желательно сконцентрировать под пайолами в виде цистерны с поперечным сечением, соответствующим килеватости днища. Если судно снабжается каютой, то необходимо по возможности облегчить конструкцию надстройки и уменьшить ее высоту, снизить уровень платформы кокпита и поста рулевого. Стационарный двигатель на катере также должен устанавливаться как можно ниже.

Об остойчивости лодки необходимо помнить и укладывая в ней снаряжение для дальнего похода; наиболее тяжелые вещи следует располагать возможно ниже и компактнее. В случаях, когда требуется обеспечить особенно высокую остойчивость, необходимую для плавания под парусами либо для компенсации влияния громоздких надстроек, приходится загружать судно балластом . Оптимальное его расположение - снаружи корпуса в виде фальшкиля - свинцовой или чугунной отливки, прикрепленной к килю и усиленным флорам на болтах. Чем глубже под ватерлинией закреплен фальшкиль, тем в большей степени понижается общий центр тяжести судна.

Менее эффективен внутренний балласт из металлических отливок, укладываемый в трюме судна. Он должен быть надежно закреплен, чтобы исключить перемещение в сторону накрененного борта, ибо в этом случае балласт будет способствовать опрокидыванию судна. Кроме того, нужно позаботиться о том, чтобы чушки не пробили тонкую обшивку днища при плавании на волнении.

При разработке проекта нового судна конструктор имеет возможность изменять величину остойчивости, задавая ту или иную форму корпусу. Например, большое значение имеет ширина лодки по ватерлинии и коэффициент ее полноты α. Приближенно величину метацентрического радиуса r можно определить по формуле

Следовательно, наиболее существенно на величину r и поперечной метацентрической высоты h = r а влияет ширина корпуса по ватерлинии B , которую следует выбирать настолько большой, насколько это можно допустить по соображениям ходкости.

В качестве ориентировочных цифр для выбора ширины лодки могут быть названы следующие средние отношения L /B : туристские байдарки и каноэ - 5,5÷8,5; гребные и моторные тузики длиной до 2,5 м - 1,8÷2; гребные трех-, четырехместные лодки (фофаны, плоскодонные челноки и т. п.) - около 3,5, малые мотолодки длиной до 3 м - 2,4; большие глиссирующие мотолодки длиной 4-5,5 м - 3÷3,4; глиссирующие катера открытого типа - 3,2÷3,5; водоизмещающие катера длиной 6-8 м - 3,5÷4,5.

Коэффициент α также имеет большое значение, особенно для тихоходных гребных судов и водоизмещающих катеров, ватерлинии которых часто выполняют слишком узкими для снижения сопротивления воды. На малых лодках - тузиках целесообразно обводы ватерлинии выполнять с максимальной полнотой - α = 0,75÷0,85. На туристских байдарках коэффициент α желательно иметь более 0,70; на больших гребных лодках и водоизмещающих катерах α = 0,65÷0,72.

Понятно, что наиболее благоприятной для остойчивости формой ватерлинии является прямоугольник, поэтому, если нужна особенно высокая остойчивость, целесообразны корпуса с обводами типа «морские сани», катамаран или тримаран, у которых борта практически параллельны по всей длине. Чем бо́льшая доля объема подводной части корпуса сосредоточена вблизи бортов, тем больше при крене смещается к борту центр величины и больше плечо восстанавливающего момента. Крайними полюсами являются двухкорпусные суда - катамараны и лодка с обводом миделя, близким к окружности (рис. 8), у которой плечо остойчивости при крене изменяется весьма незначительно. Чем более ясно выражена скула в поперечных сечениях корпуса, тем остойчивее лодка. Для небольших лодок оптимален корпус с выпуклостями близ скул и очертанием корпуса в плане, близким к прямоугольнику.

Рис. 8. Поперечные сечения малых судов, расположенные в порядке уменьшения начальной остойчивости (сверху - вниз).

Остойчивость на больших углах крена. Как было показано выше, восстанавливающее плечо с увеличением крена изменяется пропорционально синусу угла крена. Кроме того, не остается постоянной и поперечная метацентрическая высота h , величина которой зависит от изменения метацентрического радиуса r . Очевидно, что полной характеристикой остойчивости судна может быть график изменения восстанавливающего плеча или момента в зависимости от угла крена, который называется диаграммой статической остойчивости (рис. 9). Характерными точками диаграммы являются момент максимума остойчивости судна и предельного угла крена, при котором судно опрокидывается (θ з - угол заката диаграммы статической остойчивости). При таком крене центр тяжести вновь оказывается расположенным на одной вертикали с ЦВ; следовательно, плечо остойчивости равно нулю.

Рис. 9. Диаграмма статической остойчивости

1 - высокобортный катер с каютой; 2 - шлюпка открытого типа; 3 - мореходная моторная яхта с балластом; 4 - плечо кренящего момента M кр.

A (угол крена θ = 16°) - устойчивое положение судна при действии момента M кр; и (θ = 60°) - неустойчивое положение; C (θ = 33°) - угол заливания шлюпки; D (θ = 38°) - максимум восстанавливающего момента; E (θ = 82°) - угол заката диаграммы остойчивости 1 .

Однако опасный момент может наступить еще раньше, если судно имеет открытый кокпит, бортовые иллюминаторы или палубные люки, через которые вода может проникнуть внутрь судна при меньшем угле крена. Этот угол называется углом заливания .

Форма диаграммы статической остойчивости и положение ее характерных точек зависят от обводов корпуса и положения ЦТ судна. Обычно максимальное восстанавливающее плечо бывает при угле крена, соответствующем началу погружения в воду кромки палубы, когда ширина креновой ватерлинии оказывается наибольшей. Поэтому чем выше надводный борт, тем до большего угла крена судно сохраняет свою остойчивость. В момент, когда из воды выходит киль, ширина креновой ватерлинии начинает уменьшаться; соответственно уменьшается и величина метацентрического радиуса r . В то же время плечо остойчивости веса увеличивается и при крене 50-60° на большинстве малых судов восстанавливающее плечо l становится равным нулю.

Исключение составляют парусные яхты с тяжелым фальшкилем, у которых максимум остойчивости наступает при крене 90°, т. е. когда мачта уже лежит на воде. Если при этом все отверстия в палубе герметичны, то момент потери остойчивости (l = 0) наступает примерно при крене 130°, когда мачта направлена вниз под углом 40° к поверхности воды. Известно немало случаев, когда опрокинувшиеся вверх килем яхты (угол крена 180°) вновь возвращались в прямое положение.

Такое же свойство самоспрямления из опрокинутого положения может быть достигнуто на катерах с надстройками большого объема, снабженными герметичными закрытиями. При положении вверх килем ЦТ такого судна оказывается расположенным много выше ЦВ - достигается положение неустойчивого равновесия, из которого катер может быть выведен действием небольшой волны или заполнением забортной водой специальной цистерны у одного из бортов.

У катамаранов плечо остойчивости достигает максимальной величины, когда один из корпусов полностью выходит из воды - оно немного меньше половины расстояния между ДП корпусов. Такое положение достигается у большинства катамаранов при крене 8-15°. При дальнейшем увеличении крена плечо остойчивости быстро уменьшается и при крене 50-60° наступает момент неустойчивого равновесия, после чего остойчивость катамарана становится отрицательной.

С помощью диаграммы статической остойчивости конструктор и капитан могут оценивать способность судна противостоять тем или иным кренящим силам, возникающим, например, при перемещении части груза к одному из бортов, действии ветра на паруса и т. п. Кренящий момент M кр (или его плечо, равное M кр /D ) откладывается на диаграмме в виде кривой (или прямой) в зависимости от угла крена. Точка пересечения этой кривой с диаграммой восстанавливающего момента соответствует углу крена, который получит судно. Если кривая M кр проходит выше максимума диаграммы статической остойчивости, судно опрокинется. Если кривая M кр пересекает кривую восстанавливающего момента, то на восходящей ветви диаграммы (точка A ) его положение будет устойчивым - если при действии небольшого дополнительного кренящего момента крен судна и увеличивается, то с прекращением действия этого дополнительного момента оно возвращается в прежнее положение A . На нисходящей ветви диаграммы в точке B небольшое приращение кренящего момента вызовет значительное увеличение крена, так как восстанавливающий момент окажется меньше кренящего; судно может опрокинуться. При уменьшении же кренящего момента судно из положения B перейдет в положение A . Следовательно, положение судна, соответствующее точке B , является неустойчивым.

Динамическая остойчивость. Выше рассматривалось статическое действие кренящего момента на судно, когда силы постепенно возрастают по величине. На практике, однако, часто приходится иметь дело с динамическим действием внешних сил, при котором кренящий момент достигает своей конечной величины в короткий промежуток времени - мгновенно. Такое случается, например, при налетевшем шквале или ударе волны в наветренную скулу, прыжке человека на борт лодки с высокой набережной и т. п. В этих случаях важна не только величина кренящего момента, но и кинетическая энергия, сообщаемая судну и поглощаемая работой восстанавливающего момента. Важную роль играют высота надводного борта и угол крена, при котором возможно заливание лодки водой. Эти параметры, как и ширина, определяют остойчивость при динамическом действии внешних сил: чем выше надводный борт и чем позже вода начинает поступать в корпус, тем бо́льшая энергия кренящих сил поглощается работой восстанавливающего момента при наклонении судна.

При эксплуатации малых судов, в частности, при плавании под парусами, выполнении спасательных операций и т. п., рекомендуется предусмотреть хотя бы неширокую бортовую опалубку (120-250 мм). При внезапном крене палуба входит в воду, на что следует быстрая реакция экипажа, который своей массой откренивает лодку еще до попадания в нее воды.

Повысить остойчивость судна можно с помощью бортовых наделок - булей (см. рис. 172), надувной камеры или пенопластового привального бруса, опоясывающего борта лодки близ их верхней кромки, поплавков достаточно большого объема, закрепленных на кронштейнах к бортам, или посредством соединения двух лодок в катамаран.

Повышение остойчивости с помощью твердого балласта оказывается не всегда оправданным, особенно на моторных судах, где увеличение водоизмещения связано с дополнительными затратами мощности и горючего. На глиссирующих катерах и швертботах в качестве временного балласта может быть использована забортная вода, заполняющая самотеком специальные донные цистерны (рис. 10). На катере он нужен только на стоянке и на малом ходу, когда динамические силы поддержания имеют незначительную величину. Вода из цистерны будет удаляться через кормовой срез транца, как только он оторвется от воды. На швертботе, наоборот, балласт необходим для повышения остойчивости под парусами; при плавании под мотором или при подъеме на берег воду можно удалить из цистерны с помощью помпы. Объем подобных балластных цистерн обычно принимается равным 20-25 % водоизмещения судна.

Рис. 10. Балластная цистерна на глиссирующем катере.

1 - полость цистерны; 2 - труба вентиляции; 3 - вход воды в цистерну; 4 - второе дно.

Попутно следует упомянуть о влиянии воды в трюме судна (или других жидкостей в цистернах) на остойчивость. Эффект заключается не столько в перемещении масс жидкостей в сторону накрененного борта, сколько в наличии свободной поверхности переливающейся жидкости - ее момента инерции относительно продольной оси. Если, например, поверхность воды в трюме имеет длину l , а ширину b , то метацентрическая высота уменьшается на величину

Особенно опасна вода в трюмах плоскодонных швертботов и мотолодок, где свободная поверхность имеет большую ширину. Поэтому при плавании в штормовых условиях воду из корпуса необходимо удалять.

Свободную поверхность жидкостей в топливных цистернах разделяют продольными отбойными переборками на несколько узких частей. В переборках делают отверстия для перетекания жидкости.

Нормирование и проверка остойчивости прогулочно-туристских судов. Опасный крен малого судна может быть вызван перемещением экипажа к одному борту, а также воздействием различных внешних сил. Как правило, прогулочно-туристские суда эксплуатируются на мелководных прибрежных участках морей и на водохранилищах с ограниченной глубиной. В этих районах волна отличается опасной крутизной и ломающимся гребнем. В положении бортом к волне размахи качки лодки могут попасть в нежелательный резонанс с периодом волны, при недостаточной остойчивости судно может опрокинуться.

Малым судам приходится противостоять и таким опасным для поперечной остойчивости нагрузкам, как рывки буксирного троса при буксировке лодки другим судном; динамическое действие упора гребного винта подвесного мотора при резкой перекладке руля; подъем в лодку через борт человека; шквал при плавании под парусом и т. п. Все это заставляет предъявлять весьма жесткие требования к остойчивости малых судов.

Минимальным значением поперечной метацентрической высоты, обеспечивающим безопасное плавание лодки или катера в самых легких условиях - на внутренней закрытой акватории, считается 0,25 м. Однако и эта цифра становится критической, когда речь идет о совсем легких гребных лодках. Ведь всегда возможен случай, когда один или два пассажира встанут во весь рост и центр тяжести лодки повысится на 0,2-0,3 м. Для судов же, выходящих на открытую воду, рекомендуется обеспечить метацентрическую высоту не ниже 0,5 м; если катер рассчитывается на плавание при волне до 3 баллов, метацентрическая высота должна быть не менее 0,7 м.

Точные замеры метацентрической высоты связаны с достаточно трудоемким опытом кренования судна, который для лодок длиной 4-5 м не всегда дает точные результаты и не может достаточно полно характеризовать остойчивость. В практике контроля и испытаний малых судов проводят более наглядный и простой эксперимент, предусмотренный ГОСТ 19356-74 ¹. Для испытаний на лодку устанавливают подвесной мотор и заполненный горючим бензобак, на сиденья грузят балласт, равный по массе паспортной грузоподъемности, причем таким образом, чтобы 60 % ее располагались у борта с центром тяжести на расстоянии 0,2 м от планширя по ширине и 0,3 м над сиденьем по высоте. Остальные 40 % полезной грузоподъемности должны быть размещены в диаметральной плоскости судна. При такой загрузке планширь со стороны накрененного борта не должен входить в воду.

¹ ГОСТ 19356-74 «Суда прогулочные гребные моторные. Методы испытаний»

По правилам «Дет Норске Веритас» проводят аналогичные испытания, но при этом дополнительно проверяют остойчивость лодки порожнем, т. е. без подвесного мотора и съемного оборудования, обычно не закрепляемого в лодке. На высоте планширя и на расстоянии 0,5 B нб от ДП закрепляют кренящий груз массой n · 20 кг, где n - полная пассажировместимость судна. При этом лодка не должна заливаться водой через борт и крен не должен превышать 30°.

Остойчивость (stability) — одно из важнейших мореходных качеств судна, с которым связаны чрезвычайно важные вопросы, касающиеся безопасности плавания. Утрата остойчивости почти всегда означает гибель судна и очень часто экипажа. В отличие от изменения других мореходных качеств уменьшение остойчивости не проявляется видимым образом, и экипаж судна, как правило, не подозревает о грозящей опасности до последних секунд перед опрокидыванием. Поэтому изучению этого раздела теории корабля необходимо уделять самое большое внимание.

Для того чтобы судно плавало в заданном равновесном положении относи-тельно поверхности воды, оно должно не только удовлетворять условиям рав-новесия, но и быть способным сопротивляться внешним силам, стремящимся вывести его из равновесного положения, а после прекращения действия этих сил — возвращаться в первоначальное положение. Следовательно, равновесие судна должно быть устойчивым или, другими словами, судно должно обладать положительной остойчивостью.

Таким образом, остойчивость — это способность судна, выведенного из состояния равновесия внешними силами, вновь возвращаться к первоначальному положению равновесия после прекращения действия этих сил.

Остойчивость судна связана с его равновесием, которое служит ха-рактеристикой последней. Если равновесие судна устойчивое, то судно обладает положительной остойчивостью; если его равновесие безразличное, то судно обладает нулевой остойчивостью, и, наконец, если равновесие судна неустойчивое, то оно обладает отрицательной остойчивостью.

Танкер Капитан Ширяев
Источник: fleetphoto.ru

В этой главе будут рассматриваться поперечные наклонения судна в плоскости мидель-шпангоута.

Остойчивость при поперечных наклонениях, т. е. при возникновении крена, называется поперечной. В зависимости от угла наклонения судна поперечная остойчивость делится на остойчивость при малых углах наклонения (до 10-15 град), или так называемую начальную остойчивость, и остойчивость при больших углах наклонения.

Наклонения судна происходят под действием пары сил; момент этой пары сил, вызывающий поворот судна вокруг продольной оси, будем называть кренящим Мкр.

Если Мкр, приложенный к судну, нарастает постепенно от нуля до конечного значения и не вызывает угловых ускорений, а следовательно, и сил инерции, то остойчивость при таком наклонении называется статической.

Кренящий момент, действующий на судно мгновенно, приводит к воз-никновению углового ускорения и инерционных сил. Остойчивость, проявля-ющаяся при таком наклонении, называется динамической.

Статическая остойчивость характеризуется возникновением восста-навливающего момента, который стремится возвратить судно в первоначальное положение равновесия. Динамическая остойчивость характеризуется работой этого момента от начала и до конца его действия.

Рассмотрим равнообъемное поперечное наклонение судна. Будем считать, что в исходном положении судно имеет прямую посадку. В этом случае сила поддержания D’ действует в ДП и приложена в точке С — центре величины судна (Centre of buoyancy-В).


Рис. 1

Допустим, что судно под действием кренящего момента получило поперечное наклонение на малый угол θ. Тогда центр величины переместится из точки С в точку С 1 и сила поддержания, перпендикулярная новой действующей ватерлинии В 1 Л 1 , будет направлена под углом θ к диаметральной плоскости. Линии действия первоначального и нового направлении силы поддержания пересекутся в точке m. Эта точка пересечения линии действия силы поддержания при бесконечно малом равнообъемном наклонении плавающего судна называется поперечным мета центром (metacentre).

Можно дать другое определение метацентру: центр кривизны кривой перемещения центра величины в поперечной плоскости называется поперечным мета центром.

Радиус кривизны кривой перемещения центра величины в поперечной плоскости называется поперечным мета центрическим радиусом (или малым метацентрическим радиусом) (Radius of metacentre). Он опреде-ляется расстоянием от поперечного метацентра m до центра величины С и обозначается буквой r.

Поперечный метацентрический радиус может быть вычислен с помощью формулы:

т. е. поперечный метацентрический радиус равен моменту инерции Ix площади ватерлинии относительно продольной оси, проходящей через центр тяжести этой площади, деленному на соответствующее этой ватерлинии объёмное водоизмещение V.

Условия остойчивости

Допустим, что судно, находящееся в прямом положении равновесия и плавающее по ватерлинию ВЛ, в результате действия внешнего кренящего момента Мкр накренилось так, что исходная ватерлиния ВЛ с новой действующей ватерлинией В 1 Л 1 образует малый угол θ. Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть корпуса, также изменится. Центр величины судна переместится в сторону крена и перейдет из точки С в точку С 1 .

Сила поддержания D’, оставаясь неизменной, будет направлена вертикально вверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m.

Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В 1 Л 1 . Таким образом, силы Р и D’, параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К — основание перпендикуляра, опущенного из точки G на направление действия силы поддержания.

Пара сил, образованная весом судна и силой поддержания, стремящаяся возвратить судно в первоначальное положение равновесия, называется восстанавливающей парой, а момент этой пары — восстанавливающим моментом Мθ.

Вопрос об остойчивости накрененного судна решается направлением действия восстанавливающего момента. Если восстанавливающий момент стремится вернуть судно в первоначальное положение равновесия, то восстанавливающий момент положителен, остойчивость судна также поло-жительна — судно остойчиво. На рис. 2 показано расположение сил, действующих на судно, которое соответствует положительному восста-навливающему моменту. Нетрудно убедиться, что такой момент возникает, если ЦТ лежит ниже метацентра.

Рис. 2 Рис. 3

На рис. 3 показан противоположный случай, когда восстанавливающий момент отрицателен (ЦТ лежит выше метацентра). Он стремится еще больше отклонить судно из положения равновесия, т. к. направление его действия совпадает с направлением действия внешнего кренящего момента Мкр. В этом случае судно не остойчиво.

Теоретически можно допустить, что восстанавливающий момент при наклонении судна равен нулю, т. е. сила веса судна и сила поддержания располагаются на одной вертикали, как это показано на рис. 4.

Рис. 4

Отсутствие восстанавливающего момента приводит к тому, что после прекращения действия кренящего момента судно остается в наклоненном положении, т. е. судно находится в безразличном равновесии.

Таким образом, по взаимному положению поперечного метацентра m и Ц.Т. G можно судить о знаке восстанавливающего момента или, иными словами, об остойчивости судна. Так, если поперечный метацентр находится выше центра тяжести (рис. 2), то судно остойчиво.

Если поперечный метацентр расположен ниже центра тяжести или совпадает с ним (рис. 3, 4) судно не остойчиво.

Отсюда возникает понятие мета центрической высоты (Metacentric height): поперечной метацентрической высотой называется возвышение поперечного метацентра над центром тяжести судна в начальном положении равновесия.

Поперечная метацентрическая высота (рис. 2) определяется расстоянием от центра тяжести (т. G), до поперечного метацентра (т. m), т. е. отрезком mG. Этот отрезок является постоянной величиной, т. к. и Ц.Т. , и поперечный метацентр не изменяют своего положения при малых наклонениях. В связи с этим его удобно принимать в качестве критерия начальной остойчивости судна.

Если поперечный метацентр будет находиться выше центра тяжести судна, то поперечная метацентрическая высота считается положительной. Тогда условие остойчивости судна можно дать в следующей формулировке: судно остойчиво, если его поперечная метацентрическая высота положительна. Такое определение удобно тем, что оно позволяет судить об остойчивости судна, не рассматривая его наклонения, т. е. при угле крена равном нулю, когда восстанавливающий момент вообще отсутствует. Чтобы установить, какими данными необходимо располагать для получения значения поперечной метацентрической высоты, обратимся к рис. 5, на котором показано относительное расположение центра величины С, центра тяжести G и попе-речного метацентра m судна, имеющего положительную начальную поперечную остойчивость.

Рис. 5

Из рисунка видно, что поперечная метацентрическая высота h может быть определена по одной из следующих формул:

h = Z C ± r - Z G ;

Поперечная метацентрическая высота определяется зачастую с помощью последнего равенства. Аппликата поперечного метацентра Zm может быть найдена по метацентрической диаграмме. Основные трудности при определении поперечной метацентрической высоты судна возникают при определении аппликаты центра тяжести ZG, определение которой производится с использованием сводной таблицы нагрузки масс судна (вопрос рассматривался в лекции — ).

В иностранной литературе обозначение соответствующих точек и параметров остойчивости может выглядеть так, как указано ниже на рис. 6.

Рис. 6
  • где К - точка киля;
  • В - центр величины (Centre of buoyancy);
  • G — центр тяжести (Centre of gravity);
  • М - поперечный метацентр (metacentre);
  • КВ - аппликата центра величины;
  • KG - аппликата центра тяжести;
  • КМ — аппликата поперечного метацентра;
  • ВМ - поперечный метацентрический радиус (Radius of metacentre);
  • BG - возвышение центра тяжести над центром величины;
  • GM - поперечная метацентрическая высота (Metacentric height).

Плечо статической остойчивости, обозначаемое в на шей литературе как GK, в иностранной литературе обозначается - GZ.

Предлагается к прочтению:


Существуют понятия остойчивости следующих видов: статической и динамической, при малых наклонениях судна и при больших наклонениях.

Статическая остойчивость –остойчивость судна при постепенном, плавном наклонении судна, когда силами инерции и сопротивления воды можно пренебречь.

Законы начальной остойчивости сохраняют свою справедливость только до определенного угла крена. Величина этого угла зависит от типа судна и состояния его нагрузки. У судов с малой начальной остойчивостью(пассажирские и лесовозы) предельный угол крена составляет 10-12 градусов, у танкеров и сухогрузных до 25-30 градусов. Расположение ЦТ (центра тяжести) и ЦВ (центра величины)-являются основными факторами влияющими на остойчивость при крене судна.

Основные элементы остойчивости : водоизмещение ∆ , плечо восстанавливающего момента (плечо статической остойчивости)- lcт, начальный метацентрический радиус- r ,

поперечная метацентрическая высота- h ,угол крена- Ơ , Момент восстанавливающий- Мв

Момент кренящий- Мкр, коэффициент остойчивости -К, возвышение центра тяжести Zg,

возвышение центра величины -Zc, Критерий погоды-K, ДСО (диаграмма статической остойчивости), ДДО (диаграмма динамической остойчивости).

ДСО –дает полную характеристику остойчивости судна : поперечную метацентрическую высоту, плечо статической остойчивости, предельный угол ДСО, угол заката ДСО.

ДСО позволяет решать следующие задачи:

  • величина кренящего момента от смещения груза и опрокидывающего момента;
  • создание необходимого обнажения борта для ремонта корпуса, забортной арматуры;
  • определение наибольшей величины статически приложенного кренящего момента, который может выдержать судно не опрокидываясь, и крена, который оно при этом получит;
  • определение угла крена судна от мгновенно приложенного кренящего момента при отсутствии начального крена;
  • определение угла крена от внезапно приложенного кренящего момента при наличии начального крена по направлению действия кренящего момента;
  • определение угла крена от внезапно приложенного кренящего момента при наличии начального крена в направлении, противоположном действию кренящего момента.
  • Определение угла крена при перемещении груза по палубе;
  • Определение статического опрокидывающего момента и угла статического опрокидывания;
  • Определение динамического опрокидывающего момента и угла динамического опрокидывания;
  • Определение необходимого кренящего момента для спрямления судна;
  • Определение веса груза при перемещении которого судно потеряет остойчивость;
  • Что сделать для улучшения остойчивости судна.

Нормировании остойчивости по требованию Регистра судоходства России и Украины:

  1. максимальное плечо статической остойчивости ДСО более или = 0,25 м. при максимальной длине судна менее или = 80 м. и более или =0,20 м. при длине судна более или = 105 м. ;
  2. угол максимума диаграммы более или = 30 градусов;
  3. угол заката ДСО более или = 60 град. и 55 град., при учете обледенения

4. критерий погоды – К более или =1, а при плавании в Северной Атлантике-1.5

5. исправленная поперечная метацентрическая высота для всех вариантов загрузки

должна быть всегда положительной, а для рыболовных судов не менее-0,05 м.

Характеристики бортовой качки судна зависят от метацентрической высоты. Чем больше метацентрическая высота тем качка более резкая, интенсивная, что отрицательно влияет на крепление груза и его целостность, а в целом на безопасность всего судна.

Ориентировочно значение оптимальной метацентрической высоты для различных судов в метрах:

  • грузопассажирские большого тоннажа 0,0-1,2 м., среднего тоннажа 0,6-0,8 м.
  • сухогрузные большого тоннажа 0,3-1,5м., среднего тоннажа 0,3-1,0 м.
  • большие танкеры 1.5-2.5 м.

Для сухогрузных судов среднего тоннажа на основании натурных наблюдений определены четыре зоны остойчивости:

А- зона валкости или недостаточной остойчивости-h|B =0.0-0.02 –при поворотах таких судов на полном ходу возникает крен до 15-18 град.

Б- зона оптимальной остойчивости h|B=).02-0.05 – на волнении суда испытывают плавную качку, условия обитаемости для экипажа хорошие, поперечные инерционные силы не превышают 10% силы тяжести палубного груза.

В- зона дискомфорта или повышенной остойчивости h|B=0.05-0.10-резкая качка, условия работы и отдыха экипажа плохие, поперечные инерционные силы достигают 15-20 % силы тяжести палубного груза.

Г-зона чрезмерной остойчивости или разрушения h|B более 0.10-поперечные инерционные силы на качке могут достигнуть 50% силы тяжести палубного груза, при этом крепление груза нарушается, разрушаются палубные детали такелажа (рымы, обушки), фальшборт судна, что влечет к потери груза и гибели судна.

В Информации об остойчивости судна обычно даются полные расчеты остойчивости без обледенения:

  • 100% судовых запасов без груза
  • 50% судовых запасов и 50% груза, из них может быть палубный груз
  • 50% запасов и 100% груза
  • 25% судовых запасов, без груза, груз на палубе
  • 10% судовых запасов, 95 % груза.

С учетом обледенения- то же + с балластом в танках.

Кроме расчета остойчивости для типовых случаев нагрузки с обледенением и без обледенения Информация об остойчивости позволяет вести полный расчет остойчивости судна для нетиповых случаев нагрузки. При этом необходимо:

  • Иметь точную картину расположения груза по грузовым помещениям в тоннах;
  • Данные в тоннах по танкам судовых запасов: тяжелое топливо, дизтопливо, масло, вода;
  • Составить таблицу весов по данной загрузке судна, рассчитать моменты ЦТ судна

относительно вертикальной и горизонтальной оси и аппликаты по вертикали и горизонтали-

  • Рассчитать суммы весов (общее водоизмещение судна),значение продольного момента ЦТ судна (с учетом знаков + и -), вертикального статического момента
  • Определить аппликату и абсциссу ЦТ судна, как соответствующие моменты деленные на настоящее полное водоизмещение судна в тоннах
  • По количеству запасов в % и груза в % по справочным таблицам (предельной кривой) грубо оценить остойчиво судно или нет и есть ли необходимость принимать в судовые междудонные танки дополнительно балласт забортной воды.
  • Определить посадку судна по кривым дифферента (см. таблицы в Информации об остойчивости)
  • Определить начальную поперечную метацентрическую высоту, как разницу между аппликатой центра величины - и аппликатой центра тяжести, выбрать из таблиц (приложение Информации об остойчивости – далее «Информация») поправку на свободную поверхность к поперечной метацентрической величине- определить исправленную поперечную метацентрическую величину.
  • С рассчитанными значениями водоизмещения судна для данного рейса и исправленной метацентрической высотой войти в диаграмму плеч кривых статической остойчивости (прилагается в «Информации») и через 10 градусов построить ДСО плеч статической остойчивости от угла крена при данном водоизмещении (диаграмма Рида)
  • С диаграммы ДСО снять все основные данные по требованиям Регистра судоходства Украины, России.
  • Определить величину условной расчетной амплитуды бортовой качки для данного случая загрузки, пользуясь рекомендациями в справочных данных.Увеличить эту амплитуду на 2-5 градусов за счет давления ветра (берется в расчет давление ветра силой 6-7 баллов). С учетом всех действующих факторов одновременно эта амплитуда может достигать значений-15-50 градусов.
  • Продолжить ДСО в сторону отрицательных значений абсциссы и отложить влево от нуля координат величину расчетной амплитуды качки, затем восстановить из точки на отрицательном значении оси абсцисс перпендикуляр. На глаз провести горизонтальную линию параллельную оси абсцисс так. Чтобы площадь слева от оси абсцисс и справа на ДСО были равны. (см. пример)-определяем плечо опрокидывающего момента.
  • Снять с ДСО при этом плечо опрокидывающего момента и рассчитываем опрокидывающий момент, как произведение водоизмещения и плеча опрокидывающего момента.
  • По величине средней осадки (рассчитаны ранее) выбрать значение кренящего момента из дополнительных таблиц (Информации)
  • Рассчитать критерий погоды –К, если он удовлетворяет требованиям Регистра - судоходства Украины, включая все остальные 4 критерия, то расчет остойчивости на этом заканчивается, но по требования Кодекса остойчивости судов всех типов ИМО от -1999 года, требуется дополнительно иметь еще два критерия остойчивости, которые можно определить только из ДДО (диаграммы динамической остойчивости).При плавании судна в условиях обледенения, рассчитать критерий погоды для этих условий.
  • Построение ДДО – диаграммы динамической остойчивости проще выполнить на основании диаграммы ДСО, пользуясь схемой табл. 8 (стр. 61- Л.Р.Аксютин «Грузовой план судна»-Одесса-1999 г.или стр.22-24 «Контроль остойчивости морских судов»-Одесса-2003 г.)-для расчета плеч динамической остойчивости. Если по диаграмме предельных моментов в Информации об остойчивости –судно остойчиво по нашим расчетам, то проводить расчет ДДО- не обязательно.

По требованиям Кодекса остойчивости ИМО-1999 г.(Резолюция ИМО А.749 (18) от июня 1999 года)

· минимальная поперечная метацентрическая высота GM o -0.15 м. для пассажирских судов, а для рыболовных- более или равно 0,35 ;

· плечо статической остойчивости не менее- 0.20 м.;

· мамксимум ДСО при максимальном плече статической остойчивости- более или равно 25 градусов;

· плечо динамической остойчивости при угле крена более или плюс 30 град –не менее -0.055 m-rad.; (метра)

· плечо динамической остойчивости при 40 градусов (или угле заливания) не менее- 0.09 m-rad.;(метра)

· разность плеч динамической остойчивости при 30 и 40 градусов –не менее 0.03 m-rad.(метра)

· критерий погоды более или = единице (1)-для судов более или = 24 м.

· дополнительный угол крена от действия постоянного ветра для пассажирских судов не более 10 градусов, для всех остальных судов не более 16 градусов или 80% от угла, при котором кромка палубы входит в воду, в зависимости от того какой угол минимальный.

15 июня 1999 года Комитет безопасности мореплавания ИМО выпустил циркуляр 920-Руководство по загрузки и остойчивости (Model loading and stability Manual), который рекомендует всем государствам, имеющим флот, обеспечивать все суда специальным Руководством по расчету загрузки и остойчивости судна, в котором дать виды оптимальной загрузки и расчеты остойчивости судна, привести все символы и сокращении приводимые при этом., как проводить контроль остойчивости, посадки судна и его продольной прочности. В данном Руководстве приводятся все сокращения и единицы измерения при вышеупомянутых расчетах, таблицы расчета остойчивости и изгибающих моментов.

В море проверка поперечной метацентрической высоты судна ведется по приближенной формуле учитывающей ширину судна-В(м), период качки- То(сек) и С- коэффициент от 0.6- до 0,88 в зависимости от типа судна и его загрузки-h= (CB/To) 2 c точностью 85-90 % .(h-м).

Для выполнения РГЗ по предмету «Перевозка особорежимных и опасных грузов» можно воспользоваться методичкой автора «Расчет грузового плана судна» издания СевНТУ.

Конкретное задание для расчета грузового плана получить у преподавателя. Оригинал

Информации об остойчивости судна находится у преподавателя. Для выполнения расчетов

по данному судну необходимо студенту сделать копии расчетных таблиц и графиков из «Информации». Использование других «Информаций об остойчивости судна» во время морской производственной практики для своего, конкретного судна и перевозимого груза допускается к защите РГЗ.

Остойчивостью судна называют такое его свойство, благодаря которому судно при воздействии на него внешних факторов (ветер, волны и др.) и внутренних процессов (смещение грузов, перемещение жидких запасов, наличие свободных поверхностей жидкости в отсеках и т.д.) не переворачивается. Наиболее ёмким определением остойчивости судна может быть следующее: способность судна не переворачиваться при воздействии на него природных морских факторов (ветра, волнения, обледенения) в назначенном ему районе плавания, а также в сочетании с «внутренними» причинами, вызванными действиями экипажа

Эта особенность основана на природном свойстве плавающего на поверхности воды объекта - стремится вернуться в первоначальное положение после прекращения этого воздействия. Таким образом, остойчивость, с одной стороны, естественна, а, с другой, требует регламентированного контроля со стороны человека, принимающего участие в его проектировании и эксплуатации.

Остойчивость зависит от формы корпуса и положения ЦТ судна, поэтому путем правильного выбора формы корпуса припроектировании и правильного размещения грузов на судне при эксплуатации можно обеспечить достаточную остойчивость, гарантирующую предотвращение опрокидывания судна при любых условиях плавания.

Наклонения судна возможны по разным причинам: от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов и пр. Различают два вида остойчивости: поперечную и продольную. С точки зрения безопасности плавания (в особенности в штормовую погоду) наиболее опасными являются поперечные наклонения. Поперечная остойчивость проявляется при крене судна, т.е. при наклонениях его на борт. Если силы, вызывающие наклонение судна, действуют медленно, то остойчивость называют статической, а если быстро, то динамической. Наклонение судна в поперечной плоскости называют креном, а в продольной плоскости -- дифферентом; углы, образующиеся при этом, обозначают соответственно O и y. Остойчивость на малых углах наклонения (10 -- 12°) называется начальной остойчивостью.

(рис.2)

Представим себе, что под действием внешних сил судно получило крен на угол 9 (рис 2). Вследствие этого объем подводной части судна сохранил свою величину, но изменил форму; по правому борту в воду вошел дополнительный объем, а по левому борту равновеликий ему объем вышел из воды. Центр величины переместился из первоначального положения С в сторону крена судна, в центр тяжести нового объема -- точку С1. При наклонном положении судна сила тяжести Р, приложенная в точке G, и сила поддержания D, приложенная в точке С, оставаясь перпендикулярными к новой ватерлинии В1Л1 образуют пару сил с плечом GK, являющимся перпендикуляром, опущенным из точки G на направление сил поддержания.

Если продолжить направление силы поддержания из точки С1 до пересечения с ее первоначальным направлением из точки С, то на малых углах крена, соответствующих условиямначальной остойчивости, эти два направления пересекутся в точке М, называемой поперечным метацентром.

Взаимное положение точек М и G позволяет установить следующий признак, характеризующий поперечную остойчивость: (Рис.3)

  • А) Если, метацентр расположен выше центра тяжести, то восстанавливающий момент положителен и стремится вернуть судно в исходное положение, т. е. при накренении судно будет остойчиво.
  • Б) Если точка М находится ниже точки G, то при отрицательном значении h0 момент отрицателен и будет стремиться увеличивать крен, т. е. в этом случае судно неостойчивое.
  • В) Когда точки М и G совпадают, силы Р и D действуют по одной вертикальной прямой, пары сил не возникает, и восстанавливающий момент равен нулю: тогда судно надо считать неостойчивым, так как оно не стремится вернуться в первоначальное положение равновесия (рис. 3).

Рис.3

Внешними признаками отрицательной начальной остойчивости корабля являются:

  • -- плавание корабля с креном при отсутствии кренящих моментов;
  • -- стремление корабля перевалиться на противоположный борт при спрямлении;
  • -- переваливание с борта на борт при циркуляции, при этом крен остается и при выходе корабля на прямой курс;
  • -- большое количество воды в трюмах, на платформах и палубах.

Остойчивость, которая проявляется при продольных наклонениях судна, т.е. при дифференте, называется продольной.


При продольном наклонении судна па угол ш вокруг поперечной оси Ц.В. переместится из точки С в точку C1 и сила поддержания, направление которой нормально к действующей ватерлинии, будет действовать под углом ш к первоначальному направлению. Линии действия первоначального и нового направления сил поддержания пересекаются в точке. Точка пересечения, линии действия сил поддержания при бесконечно малом наклонении в продольной плоскости называется продольным метацентром М. мореходный остойчивость ходкость корабль

Продольный момент инерции площади ватерлинии IF значительно большепоперечного момента инерции IX . Поэтому продольный метацентрический радиус R всегда значительно больше поперечного r. Ориентировочно считают, что продольный метацентрический радиус R приблизительно равен длине судна. Поскольку величина продольного метацентрического радиуса R во много раз больше поперечного r, продольная метацентрическая высота H любого судна во много раз больше поперечной h. поэтому, если у судна обеспечена поперечная остойчивость, то продольная остойчивость обеспечена заведомо.

Факторы, влияющие на остойчивость судна, которые имеют сильное влияние на остойчивость судна.

К таким факторам, которые необходимо учитывать при эксплуатации маломерного судна, следует отнести:

  • 1. На остойчивость судна наиболее ощутимо влияет его ширина: чем больше она по отношению к его длине, высоте борта и осадке, тем выше остойчивость. У более широкого судна больше восстанавливающий момент.
  • 2. Остойчивость небольшого судна повышается, если изменить форму погруженной части корпуса при больших углах крена. На этом утверждении, например, основано действие бортовых булей и пенопластового привального бруса, которые при погружении в воду создают дополнительный восстанавливающий момент.
  • 3. Остойчивость ухудшается при наличии на судне топливных баков с зеркалом поверхности от борта до борта, поэтому эти баки должны иметь перегородки, установленные параллельно диаметральной плоскости судна, или быть сужены в своей верхней части.
  • 4. На остойчивость наиболее сильно влияет размещение на судне пассажиров и грузов, их следует располагать как можно ниже. Нельзя допускать на судне малых размеров во время его движения сидение людей на борту и их произвольное перемещение. Грузы должны быть надежно закреплены, чтобы исключить их неожиданное смещение со штатных мест.
  • 5. При сильном ветре и волнении действие кренящего момента (особенно динамического) очень опасно для судна, поэтому с ухудшением погодных условий необходимо отвести судно в укрытие и переждать непогоду. Если этого сделать невозможно из-за значительного расстояния до берега, то в штормовых условиях нужно стараться держать судно "носом на ветер", выбросив плавучий якорь и работая двигателем на малом ходу.

Избыточная остойчивость вызывает стремительную качку и повышает опасность возникновения резонанса. Поэтому регистром установлены ограничения не только нижнего, но и верхнего предела остойчивости.

Для увеличения остойчивости судна (увеличения восстанавливающего момента на единицу угла крена) необходимо увеличить метацент- рическую высоту h путем соответствующего размещения на судне грузов и запасов (более тяжелые грузы внизу, а легкие наверху). С этой же целью (особенно при плавании в балласте -- без груза) прибегают к заполнению водой балластных танков.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «chocotur.ru» — Туризм вокруг света